Abstract
We consider a mathematical model which describes the equilibrium of two elastic membranes fixed on their boundary and attached to an adhesive body, say a glue. The variational formulation of the model is in a form of an elliptic quasivariational inequality for the displacement field. We prove the unique weak solvability of the model, and then we state and prove a convergence result, for which we provide the corresponding mechanical interpretation. Next, we consider two associated optimization problems for which we provide existence results. Finally, we the present numerical simulation which validates our convergence result. We end this paper with some concluding remarks and an Appendix, in which we present the preliminary material needed in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.