Abstract

A two-dimensional (2D) computational fluid dynamics model based on discrete lumping approach was used to predict the product yields of a pilot scale vacuum gas oil (VGO) hydrocracking reactor. This model was developed by solving mass conservation equations in conjunction with the continuity and momentum balances in the z-r cylindrical plane. The kinetic parameters of the model were estimated from the experimental data, and validated by using actual values. Results show that the proposed model can appreciably improve the accuracy of the yield prediction in comparison to the predicted value using the 1D model. Moreover, it is confirmed that the order of magnitude of the radial liquid velocity against the axial one is considerably low, and there is no significant pressure drop along the r-direction. Additionally, results show that two-dimensional model is a reliable tool for evaluating the catalyst performance and also for designing commercial reactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call