Abstract

A new model of dendritic growth and solute distribution of Fe-0.04%C binary alloys was developed, which is based on the sharp interface model of dendritic growth. This innovative model improved the cellular automaton method, combined with the finite difference method, considered concentration field, temperature field and the shape of molten pool. This model simulated the growth morphologies of single equiaxial crystal, the relationship between tip growth velocity and time, multi-equiaxed crystals’ growth morphologies and solute distribution, the growth of columnar crystals, columnar-to-equiaxed transition after coupling temperature field, and compared with experimental results. The results indicate that crystallographic orientation has certain influence on dendritic morphologies, that the tip growth velocity tends to be stable with the extension of time in the end, that the shape of molten pool influences the growth morphologies of columnar crystals and that the solute mainly concentrates in dendritic roots and among grain boundaries. The simulated results are in accord with experimental results.

Highlights

  • The dendritic microstructure determines material microstructure and mechanical properties during the process of metal solidification [1]

  • The results indicate that crystallographic orientation has certain influence on dendritic morphologies, that the tip growth velocity tends to be stable with the extension of time in the end, that the shape of molten pool influences the growth morphologies of columnar crystals and that the solute mainly concentrates in dendritic roots and among grain boundaries

  • Fe-0.04%C binary alloys are selected as object to simulate the dendritic growth morphology of solidification process, solute distribution and temperature field in arc-shape molten pool

Read more

Summary

Introduction

The dendritic microstructure determines material microstructure and mechanical properties during the process of metal solidification [1]. In order to solve the above problem, this work combines the CA method with the finite difference method (FD), namely the CA-FD method, assumes that the molten pool has a standard arc shape, establishes the molten pool model, temperature field model, dendritic nucleation, growth, and solute redistribution and diffusion models, and simulates the growth morphology and solute distribution of single crystal and multi-equiaxed crystals with different crystallographic orientations in the center of arc-shaped molten pool, and analyzes the relationship between tip growth velocity of dendrite and time. It simulates the growth of columnar crystals in the weld center and columnar-to-equiaxed transition after coupling temperature field

Model Description
Molten Pool Model
FD Model for Temperature Field
CA Model for Microstructure
Solute Redistribution and Diffusion Model
Simulation Results and Discussions
The Simulation of Single Equiaxial Crystal
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.