Abstract
A two-dimensional, axisymmetric model of a bounded, partially ionized, magnetized glow discharge plasma has been developed. The model treats positive ions as particles and electrons as a fluid in a hybrid configuration. The results reported are directed towards simulating an electron cyclotron resonance (ECR), microwave-sustained plasma. Microwave power profiles in the plasma are assumed, and the resulting electron and ion transport in the applied magnetic and self-consistent electrostatic field is calculated. Sheaths under typical operating conditions are very thin and the authors apply an analytic sheath model to avoid integration in the sheaths. Typical results are presented for a common ECR reactor geometry and conditions, and comparisons with experimental data are made when possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.