Abstract

Functional Magnetic Resonance Imaging (fMRI), for many decades acts as a potential aiding method for diagnosing medical problems. Several successful machine learning algorithms have been proposed in literature to extract valuable knowledge from fMRI. One of these algorithms is the convolutional neural network (CNN) that competent with high capabilities for learning optimal abstractions of fMRI. This is because the CNN learns features similarly to human brain where it preserves local structure and avoids distortion of the global feature space. Focusing on the achievements of using the CNN for the fMRI, and accordingly, the Deep Convolutional Auto-Encoder (DCAE) benefits from the data-driven approach with CNN’s optimal features to strengthen the fMRI classification. In this paper, a new two consequent multi-layers DCAE deep discriminative approach for classifying fMRI Images is proposed. The first DCAE is unsupervised sub-model that is composed of four CNN. It focuses on learning weights to utilize discriminative characteristics of the extracted features for robust reconstruction of fMRI with lower dimensional considering tiny details and refining by its deep multiple layers. Then the second DCAE is a supervised sub-model that focuses on training labels to reach an outperformed results. The proposed approach proved its effectiveness and improved literately reported results on a large brain disorder fMRI dataset.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call