Abstract
Bis-(3′–5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) is an important intracellular signaling molecule that affects diverse physiological processes in bacteria. The intracellular levels of c-di-GMP are controlled by proteins acting as diguanylate cyclase (DGC) and phosphodiesterase (PDE) enzymes that synthesize and degrade c-di-GMP, respectively. In the alphaproteobacterium Rhodobacter capsulatus, flagellar motility and gene exchange via production of the gene transfer agent RcGTA are regulated by c-di-GMP. One of the R. capsulatus proteins involved in this regulation is Rcc00620, which contains an N-terminal two-component system response regulator receiver (REC) domain and C-terminal DGC and PDE domains. We demonstrate that the enzymatic activity of Rcc00620 is regulated through the phosphorylation status of its REC domain, which is controlled by a cognate histidine kinase protein, Rcc00621. In this system, the phosphorylated form of Rcc00620 is active as a PDE enzyme and stimulates gene transfer and motility. In addition, we discovered that the rcc00620 and rcc00621 genes are present in only one lineage within the genus Rhodobacter and were acquired via horizontal gene transfer from a distantly related alphaproteobacterium in the order Sphingomonadales. Therefore, a horizontally acquired regulatory system regulates gene transfer in the recipient organism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.