Abstract

In this study, we aimed to develop a protective probiotic coculture to inhibit the growth of Salmonella enterica serovar Typhimurium in the simulated chicken gut environment. Bacterial strains were isolated from the digestive mucosa of broilers and screened in vitro against Salmonella Typhimurium ATCC 14028. A biocompatibility coculture test was performed, which identified two biocompatible strains, Ligilactobacillus salivarius UO.C109 and Ligilactobacillus saerimneri UO.C121 with high inhibitory activity against Salmonella. The cell-free supernatant (CFS) of the selected isolates exhibited dose-dependent effects, and the inhibitory agents were confirmed to be proteinaceous by enzymatic and thermal treatments. Proteome and genome analyses revealed the presence of known bacteriocins in the CFS of L. salivarius UO.C109, but unknown for L. saerimneri UO.C121. The addition of these selected probiotic candidates altered the bacterial community structure, increased the diversity of the chicken gut microbiota challenged with Salmonella, and significantly reduced the abundances of Enterobacteriaceae, Parasutterlla, Phascolarctobacterium, Enterococcus, and Megamonas. It also modulated microbiome production of short-chain fatty acids (SCFAs) with increased levels of acetic and propionic acids after 12 and 24h of incubation compared to the microbiome challenged with S. Typhimurium. Furthermore, the selected probiotic candidates reduced the adhesion and invasion of Salmonella to Caco-2 cells by 37-39% and 51%, respectively, after 3h of incubation, compared to the control. These results suggest that the developed coculture probiotic strains has protective activity and could be an effective strategy to control Salmonella infections in poultry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.