Abstract
Kappa-Minkowski space-time is an example of noncommutative space-time with potentially interesting phenomenological consequences. However, the construction of field theories on this space, although operationally well-defined, is plagued with ambiguities. A part of ambiguities can be resolved by clarifying the geometrical picture of gauge transformations on the κ-Minkowski space-time. To this end we use the twist approach to construct the noncommutative U(1) gauge theory coupled to fermions. However, in this approach we cannot maintain the kappa-Poincaré symmetry; the corresponding symmetry of the twisted kappa-Minkowski space is the twisted igl(1,3) symmetry. We construct an action for the gauge and matter fields in a geometric way, as an integral of a maximal form. We use the Seiberg-Witten map to relate noncommutative and commutative degrees of freedom and expand the action to obtain the first order corrections in the deformation parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.