Abstract

Designing heterojunction photocatalysts imitating natural photosynthetic systems has been a promising approach for photocatalytic hydrogen generation. However, in the traditional Z-Scheme artificial photosynthetic systems, the poor charge separation, and rapid recombination of photogenerated carriers remain a huge bottleneck. To rationally design S-Scheme (i.e., Step scheme) heterojunctions by avoiding the futile charge transport routes is therefore seen as an attractive approach to achieving high hydrogen evolution rates. Herein, a twin S-scheme heterojunction is proposed involving graphitic C3 N4 nanosheets self-assembled with hydrogen-doped rutile TiO2 nanorods and anatase TiO2 nanoparticles. This catalyst shows an excellent photocatalytic hydrogen evolution rate of 62.37mmol g-1 h-1 and high apparent quantum efficiency of 45.9% at 365nm. The significant enhancement of photocatalytic performance is attributed to the efficient charge separation and transfer induced by the unique twin S-scheme structure. The charge transfer route in the twin S-scheme is confirmed by in situ X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) spin-trapping tests. Femtosecond transient absorption (fs-TA) spectroscopy, transient-state surface photovoltage (TPV), and other ex situ characterizations further corroborate the efficient charge transport across the catalyst interface. This work offers a new perspective on constructing artificial photosynthetic systems with S-scheme heterojunctions to enhance photocatalytic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.