Abstract

Population-level disease risk varies in space and time, and is typically estimated using aggregated disease count data relating to a set of non-overlapping areal units for multiple consecutive time periods. A large research base of statistical models and corresponding software has been developed for such data, with most analyses being undertaken in a Bayesian setting using either Markov chain Monte Carlo (MCMC) simulation or integrated nested Laplace approximations (INLA). This paper presents a tutorial for undertaking spatio-temporal disease modelling using MCMC simulation, utilising the CARBayesST package in the R software environment. The tutorial describes the complete modelling journey, starting with data input, wrangling and visualisation, before focusing on model fitting, model assessment and results presentation. It is illustrated by a new case study of pneumonia mortality at the local authority level in England, and answers important public health questions including the effect of covariate risk factors, spatio-temporal trends, and health inequalities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.