Abstract

Purpose: To review some of the basic models, differential equations and solutions, both analytic and numerical, which produce time courses for the fractions of Susceptible (S), Infectious (I) and Recovered (R) fractions of the population during the epidemic and/or endemic conditions. Methods: Two and three-compartment models with analytic solutions to the proposed linear differential equations as well as models based on the non-linear differential equations first proposed by Kermack and McKendrick (KM) [1] a century ago are considered. The equations reviewed include the ability to slide between so-called Susceptible-Infected-Recovered (SIR), Susceptible-Infectious-Susceptible (SIS), Susceptible-Infectious (SI) and Susceptible-Infectious-Recovered-Susceptible (SIRS) models, effectively moving from epidemic to endemic characterizations of infectious disease. Results: Both the linear and KM model yield typical “curves” of the infected fraction being sought “to flatten” with the effects of social distancing/masking efforts and/or pharmaceutical interventions. Demonstrative applications of the solutions to fit real COVID-19 data, including linear and KM SIR fit data from the first 100 days following “lockdown” in the authors’ locale and to the total number of cases in the USA over the course of 1 year with SI and SIS models are provided. Conclusions: COVID-19 took us all by surprise, all wondering how to help. Spreading a basic understanding of some of the mathematics used by epidemiologists to model infectious diseases seemed like a good place to start and served as the primary purpose for this tutorial.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call