Abstract
This tutorial offers an exploration of advanced Bayesian methodologies for compositional data analysis, specifically the Bayesian Lasso and Bayesian Spike-and-Slab Lasso (SSL) techniques. Our focus is on a novel Bayesian methodology that integrates Lasso and SSL priors, enhancing both parameter estimation and variable selection for linear regression with compositional predictors. The tutorial is structured to streamline the learning process, breaking down complex analyses into a series of straightforward steps. We demonstrate these methods using R and JAGS, employing simulated datasets to illustrate key concepts. Our objective is to provide a clear and comprehensive understanding of these sophisticated Bayesian techniques, preparing readers to adeptly navigate and apply these methods in their own compositional data analysis endeavors.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.