Abstract

AbstractpyFBS is an open-source Python package for frequency-based substructuring. The package implements an object-oriented approach for dynamic substructuring. This tutorial is intended to introduce structural dynamics and NVH engineers to the research toolbox in order to overcome vibration challenges in the future. The focus will be on experimental modeling and post-processing of datasets in the context of dynamic substructuring applications. The state-of-the-art methods of frequency-based substructuring, such as the virtual point transformation, the singular vector transformation, and system-equivalent model mixing, are available in pyFBS and will be presented. Furthermore, basic and application examples, as well as numerical and experimental datasets that are provided, are intended to familiarize users with the workflow of the package. pyFBS is demonstrated with two example structures. First, a simple beam-like structure is used to demonstrate how to start with the experimental modeling, FRF synthesis, virtual point transformation, and mixing of system equivalence models. Second, an automotive test structure is used to demonstrate the use of the pyFBS on a complex structure where in-situ transfer path analysis is used to characterize the blocked forces. This tutorial is intended to provide an informal overview of how research can be powered by open-source tools.KeywordsFrequency-based substructuringTransfer path analysisSource characterizationVirtual point transformationSingular vector transformationPythonOpen-sourcepyFBS

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.