Abstract
The development of analytical method for selective and sensitive detection of gossypol (Gsp), an extraction from the cotton plants, is important but still challenging in food safety and medical field. Herein, we reported a turn-on near infrared (NIR) fluorescence detection strategy for Gsp based on a metal-organic framework (MOF), QBA-Yb, which was prepared from 4,4’-(quinolone-5, 8-diyl) benzoate with Yb(NO3)3·5H2O by solvothermal synthesis. The Gsp acted as another “antenna” to sensitize the luminescence of Yb3+, leading to the turn-on NIR emission upon 467 nm excitation. As Gsp concentration increased, the NIR emission at 973 nm enhanced gradually, thus enabling highly sensitive Gsp detection in a turn-on way. The experiment and theoretical calculation results revealed the presence of strong hydrogen bonds between Gsp molecules and the MOF skeleton. The developed QBA-Yb probe showed excellent characteristics for detection of Gsp molecules, accompanied by wide linear range (5–160 μg/mL), low detection limit (0.65 μg/mL) and short response time (within 10 min). We have further demonstrated that the QBA-Yb probe was successfully applied for the determination of Gsp in real samples of cottonseeds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.