Abstract

The phenomenon of precessing vortex core is observed experimentally when swirl is imparted on an axial flow in a pipe. It manifests as a coherent structure in the form of a helical vortex of regular wavelength whose axis is coincident with the pipe’s axis. The most striking consequence of this pattern of flow is the generation of periodic fluctuations in the streamwise distribution of the wall static pressure and skin friction. While the prediction of the precessing vortex has proved possible with large-eddy simulations, there is no record of this phenomenon being captured in great detail by Reynolds-averaged Navier-Stokes methods utilizing turbulence models to close the time-averaged equations. The purpose of the research reported here was to determine whether the precessing vortex core and its impact on conditions at the wall can be captured using this approach. The turbulence model used was of the Reynolds-stress transport type which involves the solution of a differential transport equation for each of the six non-zero components of the Reynolds stress tensor. Previous studies in which such models were used in the prediction of rotating and swirling flows have shown that their performance is largely determined by the way in which the difficult fluctuating pressure-strain correlations that appear in these equations are modeled. To this end, four very different alternative models for these correlations were assessed by comparisons with experimental data for a swirling pipe flow at relatively high swirl number. It was found that the models do indeed capture the precessing vortex revealing it to be in the form of an exceptionally well-defined double vortex. It was also found that the expected periodic fluctuations in static pressure and wall skin friction, not previously obtained in turbulence model studies, are captured by the present closures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call