Abstract

Soil salinity is progressively impacting agriculture, including viticulture. Identification of genetic factors rendering grapevine (Vitis vinifera L.) resilience that can be introgressed into commercial varieties is necessary for safeguarding viticulture against the consequences of global climate change. To gain insight into the physiological and metabolic responses enabling salt tolerance, we compared a salt-tolerant accession of Vitis sylvestris from Tunisia, "Tebaba", with "1103 Paulsen" rootstock widely used in the Mediterranean. Salt stress was slowly increased, simulating the situation of an irrigated vineyard. We determined that "Tebaba" does not sequester sodium in the root but can cope with salinity through robust redox homeostasis. This is linked with rechanneling of metabolic pathways toward antioxidants and compatible osmolytes, buffering photosynthesis, such that cell-wall breakdown can be avoided. We propose that salt tolerance of this wild grapevine cannot be attributed to a single genetic factor but emerges from favorable metabolic fluxes that are mutually supportive. We suggest that introgression of "Tebaba" into commercial varieties is preferred over the use of "Tebaba" as a rootstock for improving salt tolerance in grapevine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.