Abstract

The tungsten nitrido species, [W(mu-N)(CH2-t-Bu)(OAr)2]2 (Ar = 2,6-diisopropylphenyl), has been prepared in a reaction between the alkylidyne species, W(C-t-Bu)(CH2-t-Bu)(OAr)2, and organonitriles. The dimeric nature of the nitride was established in the solid state through an X-ray study and in solution through a combination of 15N NMR spectroscopy and vibrational spectroscopy. Reaction of the nitride with trimethylsilyl trifluoromethanesulfonate afforded the monomeric trimethylsilyl imido species, W(NSiMe3)(CH2-t-Bu)(OAr)2(OSO2CF3), which was also characterized crystallographically. The W2N2 core can be reduced by one electron electrochemically or in bulk with metallocenes to afford the radical anion, {n-Bu4N}{[W(mu-N)(CH2-t-Bu)(OAr)2]2}. Density functional theory calculations suggest that the lowest-energy allowable transition in [W(mu-N)(CH2-t-Bu)(OAr)2]2 is from a highest occupied molecular orbital consisting largely of ligand-based lone pairs into what is largely a metal-based lowest unoccupied molecular orbital.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.