Abstract

An electrically conductive polypyrrole–tungsten disulphide ($${\hbox {PPy/WS}}_{2}$$) composite was synthesized by a chemical polymerization technique. The composite was characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and energy dispersive X-ray spectroscopy (EDX). FESEM images showed the grainy morphology with permeable nature. XRD and FTIR characteristic peak analysis exhibited semi-crystalline behaviour and confirming the interfacial interaction of the as-synthesized composite. EDX confirmed the presence of carbon, nitrogen, oxygen, tungsten and sulphur in the composite. The humidity sensing property of the $${\hbox {PPy/WS}}_{2}$$-50% composite was tested and an approximate linear decrease in resistance was observed with an increase in relative humidity, along with a maximum sensing response of 97% and a response-recovery time of 52 and 58 s, respectively. The sensing ability of the composite was observed to be stable, when monitored for a period of two months.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.