Abstract

The Arctic Ocean (AO) is the most river-influenced ocean. Located at the land-sea interface wherein phytoplankton blooms are common, Arctic coastal waterbodies are among the most affected regions by climate change. Given phytoplankton are critical for energy transfer supporting marine food webs, accurate estimation of chlorophyll a concentration (Chl), which is frequently used as a proxy of phytoplankton biomass, is critical for improving our knowledge of the Arctic marine ecosystem and its response to the ongoing climate change. Due to the unique and complex bio-optical properties of the AO, efforts are still needed to obtain more accurate Chl estimates, especially for coastal waters with high colored detrital material (CDM) content. In this study, we optimized the the Garver-Siegel-Maritorena (GSM) algorithm, using an Arctic bio-optical dataset comprised of seven wavelengths (the original GSM wavelengths plus 625 nm). Results suggested that our tuned algorithm, denoted GSMA, outperformed an alternative AO GSM algorithm denoted AO.GSM, but the accuracy of Chl estimates was only improved by 8%. In addition, GSMA showed appreciable robustness when assessed using a satellite image and two non-Arctic coastal datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.