Abstract

Controlling the environmental degradation of polyhydroxybutyrate (PHB) and polyhydroxyvalerate (P(HB-co-HV)) bioplastics would expand the range of their potential applications. Combining PHB and P(HB-co-HV) films with the anti-fouling agent 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOI, <10% w/w) restricted microbial colonisation in soil, but did not significantly affect melting temperature or the tensile strength of films. DCOI films showed reduced biofouling and postponed the onset of weight loss by up to 100 days, a 10-fold increase compared to unmodified films where the microbial coverage was significant. In addition, the rate of PHA-DCOI weight loss, post-onset, reduced by about 150%; in contrast a recorded weight loss of only 0.05% per day for P(HB-co-HV) with a 10% DCOI loading was observed. This is in stark contrast to the unmodified PHB film, where a recorded weight loss of only 0.75% per day was made. The ‘switch’ that initiates film weight loss, and its subsequent reduced rate, depended on the DCOI loading to control biofouling. The control of biofouling and environmental degradation for these DCOI modified bioplastics increases their potential use in biodegradable applications.

Highlights

  • On our planet of finite resources, the need to employ practises which encourage reuse, recycling and a return of the resources to natural cycles, becomes an essential and sustainable goal

  • Our study focuses on bacterially driven degradation of polyhydroxyalkanoate polymers and demonstrates by inhibiting bacterial processes using an antifouling compound such as 4,5-dichloro-2-noctyl-4-isothiazolin-3-one (DCOI), the degradation rate for PHA and likely biodegradable polymers in general can be ‘tuned’ using varying concentrations of added DCOI

  • We have previously reported that a number of these so-called ‘green plastics’ fail to demonstrate environmental degradation and would, perhaps, be more appropriately classified as ‘compostable’ [7]

Read more

Summary

Introduction

On our planet of finite resources, the need to employ practises which encourage reuse, recycling and a return of the resources to natural cycles, becomes an essential and sustainable goal. The use of synthetic polymers and their subsequent disposal has produced a scourge of material incapable of degrading or composting within reasonable time periods. The use of degradable or compostable polymers forms the basis of best practise with the environment’s health in mind. Polymers capable of degrading can be broken down into the following categories: degradable, compostable and biodegradable [1]. Polyhydroxyalkanoates (PHAs) are one of the most recognised biodegradable plastics producing zero toxic waste and capable of recycling completely into recyclable organic matter [1,2]. Our study focuses on bacterially driven degradation of polyhydroxyalkanoate polymers and demonstrates by inhibiting bacterial processes using an antifouling compound such as 4,5-dichloro-2-noctyl-4-isothiazolin-3-one (DCOI), the degradation rate for PHA and likely biodegradable polymers in general can be ‘tuned’ using varying concentrations of added DCOI

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.