Abstract

AbstractFull duplex (FD) could potentially double wireless communications capacity by allowing simultaneous transmission and reception on the same frequency channel. A single antenna architecture is proposed here based on a modified rat-race coupler to couple the transmit and receive paths to the antenna while providing a degree of isolation. To allow the self-interference cancellation (SiC) to be maximized, the rat-race coupler was made tuneable. This compensated for both the limited isolation of the rat race and self-interference caused by antenna mismatch. Tuneable operation was achieved by removing the fourth port of the rat race and inserting a variable attenuator and variable phase shifter into the loop. In simulation with a 50 Ω load on the antenna port, better than −65 dB narrowband SiC was achieved over the whole 2.45 GHz industrial, scientific and medical (ISM) band. Inserting the S-parameters of a commercially available sleeve dipole antenna into the simulation, better than −57 dB narrowband SiC could be tuned over the whole band. Practically, better than −58 dB narrowband tuneable SiC was achieved with a practical antenna. When excited with a 20 MHz Wi-Fi signal, −42 dB average SiC could be achieved with the antenna.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.