Abstract

Coverage of commercial communication standards such as GSM, UMTS, Wi-Fi and Wi-Max within a single transceiver chip is one of the most desired properties by wireless communication manufacturers. In this regard, communication companies are keenly interested in the design of high power amplifiers for broadband cellular communications to achieve this coverage. In this work, design of broadband tunable matching networks is investigated using Real Frequency Techniques. In practical applications, tunability is needed to compensate for the load impedance variations with environmental effects. In order to be able to work on sample structures, impedance transforming filters with proper topology are chosen and a broadband tunable matching network with a tunability strategy is developed. Eventually a broadband amplifier has been designed using the tunable inductor concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.