Abstract

Medical image analysis methods have been applied to clinical scenarios of tumor diagnosis and treatment. Many studies have attempted to optimize the effectiveness of tumor MRI image segmentation by deep learning, but they do not consider the optimization of local details and the interaction of global semantic information. Second, although medical image pattern recognition can learn representative semantic features, it is challenging to ignore useless features in order to learn generalizable embeddings. Thus, a tumor-assisted segmentation method is proposed to detect tumor lesion regions and boundaries with complex shapes. Specifically, we introduce a denoising convolutional autoencoder (DCAE) for MRI image noise reduction. Furthermore, we design a novel tumor MRI image segmentation framework (NFSR-U-Net) based on class-correlation pattern aggregation, which first aggregates class-correlation patterns in MRI images to form a class-correlational representation. Then the relationship of similar class features is identified to closely correlate the dense representations of local features for classification, which is conducive to identifying image data with high heterogeneity. Meanwhile, the model uses a spatial attention mechanism and residual structure to extract effective information of the spatial dimension and enhance statistical information in MRI images, which bridges the semantic gap in skip connections. In the study, over 4000 MRI images from the Monash University Research Center for Artificial Intelligence are analyzed. The results show that the method achieves segmentation accuracy of up to 96% for tumor MRI images with low resource consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.