Abstract
<p style='text-indent:20px;'>In this paper, we propose a tumor growth model to incorporate and investigate the spatial effects of autophagy. The cells are classified into two phases: normal cells and autophagic cells, whose dynamics are also coupled with the nutrients. First, we construct a reaction-(cross-)diffusion system describing the evolution of cell densities, where the drift is determined by the negative gradient of the joint pressure, and the reaction terms manifest the unique mechanism of autophagy. Next, in the incompressible limit, such a cell density model naturally connects to a free boundary system, describing the geometric motion of the tumor region. Analyzing the free boundary model in a special case, we show that the ratio of the two phases of cells exponentially converges to a "well-mixed" limit. Within this "well-mixed" limit, we obtain an analytical solution of the free boundary system which indicates the exponential growth of the tumor size in the presence of autophagy in contrast to the linear growth without it. Numerical simulations are also provided to illustrate the analytical properties and to explore more scenarios.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Discrete and Continuous Dynamical Systems - B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.