Abstract

The R programming language is very popular for developing statistical software and data analysis, thanks to rich libraries, concise and expressive syntax, and support for interactive programming. Yet, the semantics of R is fairly complex, contains many subtle corner cases, and is not formally specified. This makes it difficult to reason about R programs. In this work, we develop a big-step operational semantics for R in the form of an interpreter written in the Coq proof assistant. We ensure the trustworthiness of the formalization by introducing a monadic encoding that allows the Coq interpreter, CoqR, to be in direct visual correspondence with the reference R interpreter, GNU R. Additionally, we provide a testing framework that supports systematic comparison of CoqR and GNU R. In its current state, CoqR covers the nucleus of the R language as well as numerous additional features, making it pass a significant number of realistic test cases from the GNU R and FastR projects. To exercise the formal specification, we prove in Coq the preservation of memory invariants in selected parts of the interpreter. This work is an important first step towards a robust environment for formal verification of R programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.