Abstract

Despite the large-scale adoption of Artificial Intelligence (AI) models in healthcare, there is an urgent need for trustworthy tools to rigorously backtrack the model decisions so that they behave reliably. Counterfactual explanations take a counter-intuitive approach to allow users to explore "what if" scenarios gradually becoming popular in the trustworthy field. However, most previous work on model's counterfactual explanation cannot generate in-distribution attribution credibly, produces adversarial examples, or fails to give a confidence interval for the explanation. Hence, in this paper, we propose a novel approach that generates counterfactuals in locally smooth directed semantic embedding space, and at the same time gives an uncertainty estimate in the counterfactual generation process. Specifically, we identify low-dimensional directed semantic embedding space based on Principal Component Analysis (PCA) applied in differential generative model. Then, we propose latent space smoothing regularization to rectify counterfactual search within in-distribution, such that visually-imperceptible changes are more robust to adversarial perturbations. Moreover, we put forth an uncertainty estimation framework for evaluating counterfactual uncertainty. Extensive experiments on several challenging realistic Chest X-ray and CelebA datasets show that our approach performs consistently well and better than the existing several state-of-the-art baseline approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.