Abstract
Abstract The algebraic properties of the combination of probabilistic choice and nondeterministic choice have long been a research topic in program semantics. This paper explains a formalization in the Coq proof assistant of a monad equipped with both choices: the geometrically convex monad. This formalization has an immediate application: it provides a model for a monad that implements a nontrivial interface, which allows for proofs by equational reasoning using probabilistic and nondeterministic effects. We explain the technical choices we made to go from the literature to a complete Coq formalization, from which we identify reusable theories about mathematical structures such as convex spaces and concrete categories, and that we integrate in a framework for monadic equational reasoning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.