Abstract

Wireless mesh networks (WMNs) are evolving as a key technology for next-generation wireless networks showing raid progress and numerous applications. These networks have the potential to provide robust and high-throughput data delivery to wireless users. In a WMN, high speed routers equipped with advanced antennas, communicate with each other in a multi-hop fashion over wireless channels and form a broadband backhaul. However, the throughput of a WMN may be severely degraded due to presence of some selfish routers that avoid forwarding packets for other nodes even as they send their own traffic through the network. This paper presents an algorithm for detection of selfish nodes in a WMN that uses statistical theory of inference for reliable clustering of the nodes based on local observations. Simulation results show that the algorithm has a high detection rate and a low false positive rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.