Abstract

Peptide-based therapy, such as modified peptides, has attracted increased attention. IL-17 is a promising therapeutic target for autoimmune diseases, and levels of circulating bioactive IL-17 are associated with rheumatoid arthritis severity. In this study, a modified truncated IL-17RC is generated to ameliorate inflammation and bone destruction in arthritis. The truncated IL-17RC binds to both IL-17A and IL-17F with higher binding capacity compared to nonmodified IL-17RC. In addition, the truncated IL-17RC reduces the secretion of inflammatory and osteoclastogenic factors induced by IL-17A/F in vitro. Moreover, the administration of truncated IL-17RC dramatically improves symptoms of inflammation and inhibited bone destruction in collagen-induced arthritis mice. Collectively, these data demonstrate that modified truncated IL-17RC peptide may be a more effective treatment strategy in the simultaneous inhibition of both IL-17A and IL-17F signaling, whereas the existing agents neutralize IL-17A or IL-17F alone. These suggest that the truncated IL-17RC may be a potential candidate in the treatment of inflammatory associated bone diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call