Abstract

A genuinely two-dimensional discretization of general drift-diffusion (including incompressible Navier--Stokes) equations is proposed. Its numerical fluxes are derived by computing the radial derivatives of “bubbles” which are deduced from available discrete data by exploiting the stationary Dirichlet--Green function of the convection-diffusion operator. These fluxes are reminiscent of Scharfetter and Gummel's in the sense that they contain modified Bessel functions which allow one to pass smoothly from diffusive to drift-dominating regimes. For certain flows, monotonicity properties are established in the vanishing viscosity limit (``asymptotic monotony'') along with second-order accuracy when the grid is refined. Practical benchmarks are displayed to assess the feasibility of the scheme, including the “western currents” with a Navier--Stokes--Coriolis model of ocean circulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.