Abstract

Raw earth is among the most ancient building materials and the related building techniques are found widespread around the world. Currently, it is estimated that about 25% of the global population lives in earthen buildings and about 10% of the UNESCO World Heritage is built with earth. Nevertheless, an important overlap can be observed when the geographical distribution of raw earth constructions is compared with that of the seismic hazard. This circumstance, combined with the seismic vulnerability of earthen buildings, results in a high seismic risk, as demonstrated by recent moderate earthquakes. Despite the current awareness for this problem, little has been done so far to develop proper strengthening solutions for the rammed earth heritage. Based on the effectiveness of externally bonded fibers for masonry buildings, the strengthening of rammed earth walls with an earth mortar coating reinforced with a geomesh is here adopted as a compatible solution. The objective of this work is to investigate and characterize the bond behavior of the above mentioned strengthening solution to further describe the response of the interaction mortar-mesh. To this purpose, an experimental program was undertaken based on a series of pull-out tests. Specimens were prepared using earth mortar, two different types of meshes (glass fiber and nylon) and considering different bonded lengths. The results highlighted distinct bond behaviors. In the case of the glass fiber mesh, the bond was granted by friction and mechanical interlocking, while the mechanical anchorage promoted by the transversal yarns granted the bond of the nylon mesh.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call