Abstract
In this paper, we construct a new trivariate spline quasi-interpolation operator. It is expressed as blending sum of univariate and bivariate C1 quadratic spline quasi-interpolants and it is of near-best type, i.e. it has a small infinity norm and the coefficients functionals defining it are determined by minimizing an upper bound of the operator infinity norm, derived from the Bernstein-Bézier coefficients of its Lebesgue function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.