Abstract

Avoiding unwanted immunogenicity is of key importance in the development of therapeutic drug proteins. Animal models are of less predictive value because most of the drug proteins are recognized as foreign proteins. However, different methods have been developed to obtain immunotolerant animal models. So far, the immunotolerant animal models have been developed to assess one protein at a time and are not suitable for the assessment of combination products. Our aim was to develop an animal model for evaluating the impact of manufacturing and formulation changes on immunogenicity, suitable for both single protein and combination products. We constructed two lines of transgenic mice expressing the three human coagulation factors, II, VII, and X, by inserting a single vector containing the three coagulation factors encoding sequences separated by insulator sequences derived from the chicken beta-globin locus into the mouse genome. Immunization of transgenic mice from the two lines and their wild-type littermates showed that transgenic mice from both lines were immunotolerant to the expressed human coagulation factors. We conclude that transgenic mice immunotolerant to multiple proteins can be obtained, and that these mice are potentially useful as animal models in the assessment of immunogenicity in response to manufacturing changes. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1116–1124, 2013

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.