Abstract

Soft matter such as surfactant-water systems, block copolymers or liquid crystals can form periodic structures on nanometre to micrometre scales. This property can be used for templating nanoporous ceramics, surface patterning for electronic devices, or generation of photonic materials. Much attention has been paid to structures appearing between the layer and cylinder phases, the three so-called bicontinuous cubic phases. These are formed by two continuous interpenetrating networks of channels. In this article we describe a related phase, which has the first reported structure consisting of three interpenetrating infinite networks. It is a thermotropic (solvent-free) liquid crystal of cubic symmetry Im3m. The structure is one of the most complex in liquid crystals, and is determined by direct Fourier reconstruction of electron density. We discuss the possible rationale for the existence of such a phase, its structural relationship with the bicontinuous phases, and its position in the phase diagram.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.