Abstract
Previously we have shown that the Na+-translocating Escherichia coli (F1-delta)/Propionigenium modestum (Fo+delta) hybrid ATPase acquires a Na+-independent phenotype by the c subunit double mutation F84L, L87V that is reflected by Na+-independent growth of the mutant strain MPC8487 on succinate [Kaim, G., and Dimroth, P. (1995) J. Mol. Biol. 253, 726-738]. Here we describe a new class of mutants that were obtained by random mutagenesis and screening for Na+-independent growth on succinate. All six mutants of the new class contained four mutations in the a subunit (S89P, K220R, V264E, I278N). Results from site-specific mutagenesis revealed that the substitutions K220R, V264E, and I278N were sufficient to create the new phenotype. The resulting E. coli mutant strain MPA762 could only grow in the absence but not in the presence of Na+ ions on succinate minimal medium. This effect of Na+ ions on growth correlated with a Na+-specific inhibition of the mutant ATPase. The Ki for NaCl was 1. 5 mM at pH 6.5, similar to the Km for NaCl in activating the parent hybrid ATPase at this pH. On the other hand, activation by Li+ ions was retained in the new mutant ATPase. In the absence of Na+ or Li+, the mutant enzyme had the same pH optimum at pH 6.5 and twice the specific activity as the parent hybrid ATPase. In accordance with the kinetic data, the reconstituted mutant ATPase catalyzed H+ or Li+ transport but no Na+ transport. These results show for the first time that the coupling ion selectivity of F1Fo ATPases is determined by structural elements not only of the c subunit but also of the a subunit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.