Abstract

It remains a challenge to use a simple approach to fabricate a multi-shape memory material with high mechanical performances. Here, we report a triple crosslinking design to construct a multi-shape memory epoxy vitrimer (MSMEV), which exhibits high mechanical properties, multi-shape memory property and malleability. The triple crosslinking network is formed by reacting diglycidyl ether of bisphenol F (DGEBF) with 4-aminophenyl disulfide, γ-aminopropyltriethoxysilane (APTS) and poly(propylene glycol) bis(2-aminopropyl ether) (D2000). The triple crosslinking manifests triple functions: the disulfide bonds and the silyl ether linkages enable malleability of the epoxy network; the silyl ether linkages impart the network with high heterogeneity and broaden the glass transition region, leading to multi-shape memory property; a small amount of D2000 increases the modulus difference between the glassy and rubbery states, thereby improving the shape fixity ratio. Meanwhile, the high crosslinking density and rigid structure provide the MSMEV with high tensile strength and Young’s modulus. Moreover, integrating carbon fibers and MSMEV results in shape memory composites. The superior mechanical properties of the composites and the recyclability of carbon fiber derived from the dissolvability of MSMEV make the composites hold great promise as structural materials in varied applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.