Abstract

Lens epithelium-derived growth factor p75 (LEDGF/p75) is a DNA-binding, transcriptional co-activator that participates in HIV-1 integration site targeting. Using complementary approaches, we determined the mechanisms of LEDGF/p75 DNA-binding in vitro and chromatin-association in living cells. The binding of highly-purified, recombinant protein was assayed by surface plasmon resonance (SPR) and electrophoretic mobility gel shift. Neither assay revealed evidence for sequence-specific DNA-binding. Residues 146–197 spanning the nuclear localization signal (NLS) and two AT-hook motifs mediated non-specific DNA-binding, and DNA-binding deficient mutants retained the ability to efficiently stimulate HIV-1 integrase activity in vitro. Chromatin-association was assessed by visualizing the localization of EGFP fusion proteins in interphase and mitotic cells. Although a conserved N-terminal PWWP domain was not required for binding to condensed mitotic chromosomes, its deletion subtly affected the nucleoplasmic distribution of the protein during interphase. A dual AT-hook mutant associated normally with chromatin, yet when the mutations were combined with NLS changes or deletion of the PWWP domain, chromatin-binding function was lost. As the PWWP domain did not readily bind free DNA in vitro, our results indicate that chromatin-association is primarily affected through DNA-binding, with the PWWP domain likely contributing a protein interaction to the overall affinity of LEDGF/p75 for human chromatin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.