Abstract

A wireless and battery-less trimodal neural interface system-on-chip (SoC), capable of 16-ch neural recording, 8-ch electrical stimulation, and 16-ch optical stimulation, all integrated on a 5× 3 mm2 chip fabricated in 0.35-μm standard CMOS process. The trimodal SoC is designed to be inductively powered and communicated. The downlink data telemetry utilizes on-off keying pulse-position modulation (OOK-PPM) of the power carrier to deliver configuration and control commands at 50 kbps. The analog front-end (AFE) provides adjustable mid-band gain of 55-70 dB, low/high cut-off frequencies of 1-100Hz/10kHz, and input-referred noise of 3.46μVrms within 1Hz-50kHz band. AFE outputs of every two-channel are digitized by a 50 kS/s 10-bit SAR-ADC, and multiplexed together to form a 6.78 Mbps data stream to be sent out by OOK modulating a 434MHz RF carrier through a power amplifier (PA) and 6 cm monopole antenna, which form the uplink data telemetry. Optical stimulation has a switched-capacitor based stimulation (SCS) architecture, which can sequentially charge four storage capacitor banks up to 4V and discharge them in selectedμLEDs at instantaneous current levels of up to 24.8 mA on demand. Electrical stimulation is supported by four independently driven stimulating sites at 5-bit controllable current levels in ±(25-775)μA range, while active/passive charge balancing circuits ensure safety. In vivo testing was conducted on four anesthetized rats to verify the functionality of the trimodal SoC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call