Abstract

The construction and application of a unique monodisperse closomer drug-delivery system (CDDS) integrating three different functionalities onto an icosahedral closo-dodecaborane [B12 ](2-) scaffold is described. Eleven B-OH vertices of [closo-B12 (OH)12 ](2-) were used to attach eleven copies of the anticancer drug chlorambucil and the targeting vector glucosamine through a bifurcating lysine linker. The remaining twelfth vertex was used to attach a fluorescent imaging probe. The presence of multiple glucosamine units offered a monodisperse and highly water-soluble CDDS with a high payload of therapeutic cargo. This array enhanced the penetration of the drug into cancer cells by exploiting the overexpression of GLUT-1 receptors present on cancer cells. About 15-fold enhancement in cytotoxicity was observed for CDDS-1 against Jurkat cells, compared to CDDS-2, which lacks the GLUT-1 targeting glucosamine. A cytotoxicity comparison of CDDS-1 against colorectal RKO cells and its GLUT-1 knock-out version confirmed that GLUT-1 mediates endocytosis. Using fluorescent markers both CDDS-1 and -2 were traced to the mitochondria, a novel target for alkylating agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call