Abstract

Reward-based decision-learning refers to the process of learning to select those actions that lead to rewards while avoiding actions that lead to punishments. This process, known to rely on dopaminergic activity in striatal brain regions, is compromised in Parkinson’s disease (PD). We hypothesized that such decision-learning deficits are alleviated by induced positive affect, which is thought to incur transient boosts in midbrain and striatal dopaminergic activity. Computational measures of probabilistic reward-based decision-learning were determined for 51 patients diagnosed with PD. Previous work has shown these measures to rely on the nucleus caudatus (outcome evaluation during the early phases of learning) and the putamen (reward prediction during later phases of learning). We observed that induced positive affect facilitated learning, through its effects on reward prediction rather than outcome evaluation. Viewing a few minutes of comedy clips served to remedy dopamine-related problems associated with frontostriatal circuitry and, consequently, learning to predict which actions will yield reward.

Highlights

  • Parkinson’s disease (PD) is a neurodegenerative process commencing in the midbrain, in particular affecting dopaminergic neurons of the substantia nigra projecting into the dorsolateral striatum, resulting in motor deficits, such as tremor, bradykinesia, and rigidity (McAuley, 2003)

  • We investigated the effects of positive affect induction on outcome evaluation and reward anticipation that have been tied to distinct regions in the striatum and their associated circuitries

  • In conclusion, induced positive affect modulates computational measures of probabilistic reward-based decision-learning in patients diagnosed with PD

Read more

Summary

Introduction

Parkinson’s disease (PD) is a neurodegenerative process commencing in the midbrain, in particular affecting dopaminergic neurons of the substantia nigra projecting into the dorsolateral striatum (mostly the putamen; Bjorklund and Dunnett, 2007), resulting in motor deficits, such as tremor, bradykinesia, and rigidity (McAuley, 2003). The purpose of the present investigation was to determine whether reward-based learning deficits in patients with PD might be remedied non-invasively by factors that induce positive affect. Patients with PD show performance impairments in each of these tasks (e.g., Kitagawa et al, 1994), suggesting that performance improvements after positive affect might result from changes in dopaminergic levels in the brain. Before discussing how induced positive affect might remedy PD-related deficits in reward-based decision-learning, we first turn to a brief exposition of the neurocognitive bases of such reinforcement learning

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.