Abstract

Real-time monitoring is essential for safeguarding infrastructure in extreme environments, particularly in remote areas with abundant wind resources where sustained strong winds are common. A triboelectric-piezoelectric-electromagnetic hybrid wind energy harvester based on a snap-through bistable mechanism (ST-HWEH) is proposed, which can be used as a sustainable power source and a self-powered wind speed sensor. The piezoelectric energy harvester (PEH), triboelectric nanogenerator (TENG), and electromagnetic energy harvester (EMH) are placed at the maximum strain location, maximum contact area, and maximum displacement position of the bistable buckled beam, respectively, fully utilizing its characteristics in the structural space. The bistable buckled beam undergoes convex and concave snap-through transformations under the magnetic excitation, working synergistically with the buckled boundary to simultaneously achieve the three electromechanical energy conversions, thereby enhancing the electrical output performance of the system. Moreover, both the starting wind speed and resistance torque of the system are effectively reduced through the arrangement of symmetrical excited magnets with antimagnetic poles on the buckled beam. A prototype is prepared and subsequently experimentally verified. The results show that the overall output power density in a composite power generation unit for the ST-HWEH is 83.97 W/m3 at a wind speed of 11 m/s, which is 6.88 times higher than that of the ST-HWEH that only contains TENG. The prototype can easily light up 1000 LED lights at a mild wind speed of 5 m/s and demonstrate self-powered environmental monitoring (taking temperature and wind speed as examples), providing a potential solution for self-powered environmental monitoring and status monitoring of the infrastructure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.