Abstract

This paper presents a triangulation-based hierarchical image matching method for wide-baseline images. The method includes the following three steps: (a) image orientation by incorporating the SIFT algorithm with the RANSAC approach, (b) feature matching based on the self-adaptive triangle constraint, which includes point-to-point matching and subsequent point-to-area matching, and (c) triangulation constrained dense matching based on the previous matched results. Two new constraints, the triangulation-based disparity constraint and triangulation-based gradient orientation constraint, are developed to alleviate the matching ambiguity for wide-baseline images. A triangulation based affine-adaptive cross-correlation is developed to help find correct matches even in the image regions with large perspective distortions. Experiments using Mars ground wide-baseline images and terrestrial wide-baseline images revealed that the proposed method is capable of generating reliable and dense matching results for terrain mapping and surface reconstruction from the wide-baseline images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.