Abstract

A triangular spectral element method is established for the two-dimensional viscous Burgers equation. In the spatial direction, a new type of mapping is applied. We splice the local basis functions on each triangle into a global basis function. The second-order Crank-Nicolson/ leap-frog (CNLF) method is used for discretization in the time direction. Due to the use of a quasi-interpolation operator, the nonlinear term can be handled conveniently. We give the fully discrete scheme of the method and the implementation process of the algorithm. Numerical examples verify the effectiveness of this method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.