Abstract

This paper is a trial to prepare collagen-hydroxyapatite composites in vitro by an alternate immersion method. Collagen sponges of different biodegradabilities were prepared through chemical cross-linking of Type I collagen with glutaraldehyde (GA) at concentrations of 0.2, 1.0, and 2.0 wt%. The sponges were immersed at 37°C in Tris-HCl-buffered solution containing 200 mM CaCl2 (pH 7.4) for 2 h and then in an aqueous solution of 120 mM Na2HPO4 (pH 9.3) for a 2 h further (one immersion cycle). The alternate immersion cycle was repeated for different times to obtain collagen-hydroxyapatite composites. The characterization of the resulting composites was performed by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The weight of composites increased with an increase in immersion cycles and the rate of increase became greater with higher GA cross-linking levels for collagen sponge preparation. The pH of the phosphate solution decreased with the immersion cycle, which suggests H+ generation accompanied hydroxyapatite formation. Irrespective of the GA concentration and immersion cycle, every composite showed IR absorption bands attributable to phosphate and hydroxyl groups at 950-1100 or 550-650 and 3000-3500 cm-1 and broad peaks specific to hydroxyapatite on the XRD charts. SEM study revealed small white clusters of hydroxyapatite interspersed uniformly on/in the collagen framework without any preferential orientation. The composite prepared from 0.2 wt% GA cross-linked collagen sponge which showed favourable characteristics was applied to a rat skull defect to evaluate its osteoconductivity as well as biodegradability. The formation of new bone tissue was histologically observed at the defect 12 weeks after application in marked contrast to the collagen sponge alone. The composite degraded without any inflammation reaction. It is concluded that the collagen-hydroxyapatite composite prepared by the present method is a biodegradable biomaterial of osteoconductivity applicable to bone repair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.