Abstract

AbstractA synthetic strategy is reported for the production of a trefoil knotted polymer from a copper(I)‐templated helical knot precursor through ring expansion. The expected changes in the properties of the knotted polymer compared to a linear analogue, for example, reduced hydrodynamic radius and lower intrinsic viscosity, together with an atomic force microscopy (AFM) image of individual molecular knots, confirmed the formation of the resulting trefoil knotted polymer. The strategies employed here could be utilized to enrich the variety of available polymers with new architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.