Abstract
This paper proposes a tree decomposition of protein structures, which can be used to efficiently solve two key subproblems of protein structure prediction: protein threading for backbone prediction and protein side-chain prediction. To develop a unified tree-decomposition based approach to these two subproblems, we model them as a geometric neighborhood graph labeling problem. Theoretically, we can have a low-degree polynomial time algorithm to decompose a geometric neighborhood graph G = (V, E) into components with size O(|V|((2/3))log|V|). The computational complexity of the tree-decomposition based graph labeling algorithms is O(|V|Delta(tw+1)) where Delta is the average number of possible labels for each vertex and tw( = O(|V|((2/3))log|V|)) the tree width of G. Empirically, tw is very small and the tree-decomposition method can solve these two problems very efficiently. This paper also compares the computational efficiency of the tree-decomposition approach with the linear programming approach to these two problems and identifies the condition under which the tree-decomposition approach is more efficient than the linear programming approach. Experimental result indicates that the tree-decomposition approach is more efficient most of the time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.