Abstract

We propose a methodology for hiding all sensitive frequent itemsets in a transaction database. Our methodology relies on a novel technique that enumerates the minimal transversals of a hypergraph in order to induce the ideal border between frequent and sensitive itemsets. The ideal border is then utilized to formulate an integer linear program (ILP) that answers whether a feasible sanitized database that attains the ideal border, exists. The solution of the program identifies the set of transactions that need to be modified (sanitized) so that the hiding can be achieved with the maximum accuracy. If no solution exists, we modify the ILP by relaxing the constraints needed to be satisfied so that the sanitized database preserves the privacy with guarantee but with minimum effect in data quality. Experimental evaluation of the proposed approach on a number of real datasets has shown that the produced sanitized databases exhibit higher accuracy when compared with the solutions of other well-known approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.