Abstract

Present work is discussed on the implementation of system identification and control methods using singular value decompositions (SVD) on a systolic array of INMOS Transputer chips. The central computation required for both the system identification and control is a canonical variate analysis involving the computation of a generalized singular value decomposition (GSVD). Algorithms are developed for efficient computation of the GSVD on the Transputer systolic array. The GSVD algorithm is developed with particular attention given to the numerical stability, accuracy, and computational efficiency on the systolic array. The implementation of the software in Occam for an array of INMOS transputers is discussed in terms of granularity, required memory, and computation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call