Abstract

The SSR16 gene of Arabidopsis has been identified as a gene encoding a ribosomal protein S16 homolog through analysis of a transposon insertion mutation. The insertion mutation is lethal, arresting embryonic development at approximately the transition from the globular to the heart stage of embryonic development. Co-segregation of the mutant phenotype with the transposon-borne drug-resistance marker and loss of the inserted transposon concomitant with phenotypic reversion provided evidence that the transposon had caused the mutation. Sequences flanking the insertion site were amplified from DNA of viable heterozygotes by thermal asymmetric interlaced (TAIL) PCR. The amplified fragment flanking the 3' end of the inserted element was sequenced and found to be identical to an Arabidopsis expressed sequence tag (EST). The EST, in turn, contained a coding sequence homologous to the ribosomal protein S16 (RPS16) of bacteria such as Escherichia coli, Bacillus subtilis and Salmonella typhimurium, as well as Neurospora crassa mitochondria and higher plant plastids. Thus the gene identified by the embryo-defective lethal insertion mutation encodes an RPS16 homolog and has been designated the SSR16 gene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.