Abstract

A numerical model was developed to describe the fate and transport of hydrazinium (N2H5+) and competing Ca2+ and H+ cations applied in acidic solutions to columns of Ca2+/H+-saturated sandy soil during steady saturated flow conditions. Instantaneous ternary H+-Ca2+-N2H5+ cation exchange using the Gaines-Thomas approach was combined with second-order, irreversible, kinetic chemisorption of exchange-phase N2H5+ ions as major retention mechanisms for N2H5+. Exchange-mediated chemisorption is assumed to occur as chemical binding of N2H5+ ions located on carboxyl-group exchange sites to nearby carbonyl groups, consequently decreasing the effective soil cation exchange capacity (CEC). Comparison of simulated and observed breakthrough curves (BTCs) for concentrations of N2H5+ and Ca2+ ions in column effluent was used in model evaluation. The cation transport model with cation exchange coupled with exchange-mediated chemisorption provided a valid first approximation for N2H5+ transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.